A plug&play home energy management algorithm using optimization and machine learning techniques

Kaveh Paridari† and Lars Nordström†
†Department of Electric power & energy systems, KTH Royal Institute of Technology, Sweden

Donald Azuatalam‡, Archie Chapman‡ and Gregor Verbic‡
‡School of Electrical and Information Engineering, The University of Sydney, Australia

StandUp Academy, April 18, 2018
Smart homes’ EMS and challenges

1. Computationally intensive optimization algorithms! Assuming perfect predictions!
 ✓ Look-up table with efficient policy, having historical data
 ✓ With imperfect prediction

2. New end-users without historical data!
 ✓ Plug&play algorithm based on other end-users’ look-up table
Data needed for creating the look-up table

- Historical data:
 - End-users demand
 - PV generation
 - ToU tariff

- Optimal policy for state of charge (SOC) of the battery being computed off-line
 - Using dynamic programming (with perfect prediction)
Policy function approximation (PFA) training

- Look-up table or PFA trained by historical data:

- ✔ End-users demand \((P_d) \)
- ✔ PV generation \((P_{PV}) \)
- ✔ ToU tariff \((c) \)
- ✔ Optimal SOC \((s^*(t)) \)

\[
\hat{s}(t + 1) = f(P_d(t + 1), P_d(t), \ldots, P_d(t - n + 2), P_{PV}(t + 1), P_{PV}(t), \ldots, P_{PV}(t - n + 2), c(t + 1), c(t), \ldots, c(t - n + 2), s^*(t), \ldots, s^*(t - n + 1))
\]

- Recurrent neural network (RNN) applied to tune \(f \), in such a way to make \(\hat{s}(t + 1) \) close to the \(s^*(t + 1) \)
Real time execution of tuned PF + control policy

- To compute and send the ctrl signals to the battery:

\[\hat{s}(t + 1) = f(\tilde{P}_d(t + 1), P_d(t), ..., P_d(t - n + 2), \]
\[\tilde{P}_{PV}(t + 1), P_{PV}(t), ..., P_{PV}(t - n + 2), \]
\[c(t + 1), c(t), ..., c(t - n + 2), \]
\[s^*(t), ..., s^*(t - n + 1)) \]

- Predicted data

✓ \(\tilde{P}_d(t + 1) \): demand of 7 days before (seasonality)
✓ \(\tilde{P}_{PV}(t + 1) \): PV generation of current time step

- Control filter checking if computed SOC is feasible

\[\tilde{s}(t + 1) = F(\hat{s}(t + 1)) \]
Plug&play algorithm for new end-users

1. Find end-users with considerable historical data
2. Cluster them based on different consumption pattern (k-mean)
3. Train PFA for each of those end-users
4. Find the *indicator PFA* in each cluster
5. Assign new end-user into one of the clusters (based on a survey)
6. Apply indicator PFA for that end-user
7. Compute ctrl signal related to $\hat{s}(t + 1)$
Simulation study

- Solar PV 6 kW
- Battery 10 kWh
- Indicator PFA trained on user 5 for the first 300 days of 2013
- Indicator PFA applied to user 1 on the day 355
A plug&play home energy management algorithm using optimization and machine learning techniques

Kaveh Paridari† and Lars Nordström†

†Department of Electric power & energy systems, KTH Royal Institute of Technology, Sweden

Donald Azuatalam‡, Archie Chapman‡ and Gregor Verbic‡

‡School of Electrical and Information Engineering, The University of Sydney, Australia

StandUp Academy, April18, 2018